منابع مشابه
4-prime Cordial Graphs Obtained from 4-prime Cordial Graphs
Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a function. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if ∣∣vf (i)− vf (j)∣∣ 6 1, i, j ∈ {1, 2, . . . , k} and ∣∣ef (0)− ef (1)∣∣ 6 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled ...
متن کاملUniformly cordial graphs
LetG be a graph with vertex set V (G) and edge setE(G). A labeling f : V (G) → {0, 1} induces an edge labeling f ∗ : E(G) → {0, 1}, defined by f ∗(xy) = |f (x) − f (y)| for each edge xy ∈ E(G). For i ∈ {0, 1}, let ni(f ) = |{v ∈ V (G) : f (v) = i}| and mi(f )=|{e ∈ E(G) : f ∗(e)= i}|. Let c(f )=|m0(f )−m1(f )|.A labeling f of a graphG is called friendly if |n0(f )−n1(f )| 1. A cordial labeling ...
متن کاملk-Remainder Cordial Graphs
In this paper we generalize the remainder cordial labeling, called $k$-remainder cordial labeling and investigate the $4$-remainder cordial labeling behavior of certain graphs.
متن کاملRemainder Cordial Labeling of Graphs
In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)rightarrow {1,2,...,p}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)geq f(v)$ or $f(v)geq f(u)$. The function$f$ is called a remainder cordial labeling of $G$ if $left| e_{...
متن کاملSome totally modular cordial graphs
In this paper we define total magic cordial (TMC) and total sequential cordial (TSC) labellings which are weaker versions of magic and simply sequential labellings of graphs. Based on these definitions we have given several results on TMC and TSC graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Opuscula Mathematica
سال: 2010
ISSN: 1232-9274
DOI: 10.7494/opmath.2010.30.1.61